

Propellant-free Spacecraft Relative Maneuvering via Atmospheric Differential Drag

Professor Riccardo Bevilacqua, Grace Tilton, Skyler Kleinschmidt, David Pérez ADvanced Autonomous MUltiple Spacecraft LAB Department of Aerospace, Mechanical and Nuclear Engineering

found to be:

Current Problems in Space Industry to be Addressed

- Cost of carrying fuel is high
- Space real estate is limited and valuable
- Satellite detection is performed using reflection and/or heat emissions

Current Spacecraft Maneuvering with Propulsion Systems

mage credit to University of Surrey

Adaptive Lyapunov Control Strategy

A linear reference model is found by stabilizing the Schweighart and Sedwick model using a LQR, yielding the following:

$\dot{\boldsymbol{x}}_{d} = \underline{\boldsymbol{A}}_{d} \boldsymbol{x}_{d}, \quad \underline{\boldsymbol{A}}_{d} = \underline{\boldsymbol{A}} - \underline{\boldsymbol{B}} \underline{\boldsymbol{K}}, \quad \boldsymbol{x}_{d} = \begin{bmatrix} \boldsymbol{x}_{d} & \boldsymbol{y}_{d} & \dot{\boldsymbol{x}}_{d} & \dot{\boldsymbol{y}}_{d} \end{bmatrix}^{T}$

A Lyapunov function of the tracking error and its time derivative are found to be:

 $V = e^T \underline{P} e, \qquad e = x - x_d, \qquad \underline{P} \succ 0, \qquad \dot{V} = e^T (\underline{A}_d^T \underline{P} + \underline{P} \underline{A}_d) e + 2e^T \underline{P} (f(x) - \underline{A}_d x + \underline{B} a_{Drel} \hat{u} - \underline{B} u_d)$

If the desired guidance is a constant zero state vector (controller acts as a regulator) then the time derivative simplifies to:

$$\dot{V} = 2(\beta \hat{u} - \delta), \quad \beta = e^T \underline{P} \underline{B} a_{Drel}, \quad \delta = -e^T \underline{P} f(x), \quad \hat{u} = \begin{cases} 0 \\ 0 \end{cases}$$

Selecting: $\hat{u} = -sign(\beta) = -sign(e^T \underline{P}\underline{B})$ ensures the time derivative to be as small as possible A critical value for the magnitude of the drag acceleration that ensures Lyapunov stability is found to be: $a_{Drel} \geq \frac{\delta}{|\boldsymbol{e}^T \boldsymbol{P} \boldsymbol{R}|} = \frac{-\boldsymbol{e}^T \boldsymbol{P} \boldsymbol{f}(\boldsymbol{x})}{|\boldsymbol{e}^T \boldsymbol{P} \boldsymbol{R}|}$

- Mission life limited by fuel
- This fuel is expensive: ~\$5000/lb to transport it to Low Earth Orbit (<600km)
- Excess heat, dangerously flammable
- Volume cost
- Detectable

Differential Drag Theory

$|e \underline{I}\underline{D}|$ $|e \underline{I}\underline{D}|$ Expressions for the partial derivatives of the critical value in terms of matrices A and Q are $\frac{\partial a_{Dcrit}}{\partial \boldsymbol{Q}} = \mathbf{T}_{3}^{-1} \left(\frac{\partial \underline{\boldsymbol{P}}}{\partial \boldsymbol{Q}} \right) \left[\underline{\mathbf{I}}_{4x4} \otimes \mathbf{T}_{1}^{-1} \left(\frac{\partial a_{Dcrit}}{\partial \underline{\boldsymbol{P}}} \right) \right], \quad \frac{\partial a_{Dcrit}}{\partial \underline{\boldsymbol{A}}_{d}} = \mathbf{T}_{3}^{-1} \left(\frac{\partial \underline{\boldsymbol{P}}}{\partial \underline{\boldsymbol{A}}_{d}} \right) \left[\underline{\mathbf{I}}_{4x4} \otimes \mathbf{T}_{1}^{-1} \left(\frac{\partial a_{Dcrit}}{\partial \underline{\boldsymbol{P}}} \right) \right]$

Using these derivatives Ad and Q are adapted as follows:

 $\frac{dA_{ij}}{dt} = \kappa_A \left[-sign(\frac{\partial a_{Dcrit}}{\partial A_{ij}})\delta_A \right], \quad \frac{dQ_{ij}}{dt} = \kappa_Q \left[-sign(\frac{\partial a_{Dcrit}}{\partial Q_{ij}})\delta_Q \right], \\ \kappa_A = \begin{cases} 1 \text{ if } \left| \frac{\partial a_{Dcrit}}{\partial A_{ij}} \right| > \left| \frac{\partial a_{Dcrit}}{\partial A_{kl}} \right| \text{ for } i, j \neq k, l \\ 0 \text{ else} \end{cases}, \\ \kappa_Q = \begin{cases} 1 \text{ if } \left| \frac{\partial a_{Dcrit}}{\partial Q_{ij}} \right| > \left| \frac{\partial a_{Dcrit}}{\partial Q_{kl}} \right| \text{ for } i, j \neq k, l \\ 0 \text{ else} \end{cases}$

Origami-based Design

Origami: